least upper bounds - definizione. Che cos'è least upper bounds
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è least upper bounds - definizione

EVERY ELEMENT OF A PARTIALLY ORDERED SET A WHICH IS GREATER (RESP. LOWER) THAN EVERY ELEMENT OF A SUBSET B INCLUDED IN A
Lower bound; Upper bounds; Upper Bound; Upper bound; Upper Bound and Lower Bound; Upper and lower bound; Upper & lower bounds; Tight upper bound; Tight lower bound; Lower and upper bounds; Majorant; Majorized set; Minorant; Minorized; Minorized set; Sharp bound
  • A set with upper bounds and its least upper bound

Least-upper-bound property         
PROPERTY OF A PARTIALLY ORDERED SET
Least upper bound property; Dedekind complete; Dedekind-complete; Least upper bound axiom; Greatest lower bound property; Least upper bound principle; Dedekind completeness; Supremum property; Dedekind-completeness; Greatest-lower-bound property; Least-upper-bound principle; Lub property
In mathematics, the least-upper-bound property (sometimes called completeness or supremum property or l.u.
Upper and lower bounds         
In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is greater than or equal to every element of .
upper bound         
An upper bound of two elements x and y under some relation <= is an element z such that x <= z and y <= z. ("<=" is written in LaTeX as sqsubseteq). See also least upper bound. (1995-02-15)

Wikipedia

Upper and lower bounds

In mathematics, particularly in order theory, an upper bound or majorant of a subset S of some preordered set (K, ≤) is an element of K that is greater than or equal to every element of S.Dually, a lower bound or minorant of S is defined to be an element of K that is less than or equal to every element of S. A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.